${\sf J}/\psi$ suppression measurements by the PHENIX experiment at RHIC

Ermias T. ATOMSSA École Polytechnique Palaiseau, France

Physics motivations

QCD phase diagram

- QCD is only sector of SM where collective non equilibrium phenomena can be studied theoretically and experimentally
- Lattice QCD predicts that, at high temperature T, and baryonic chemical potential μ_b , deconfinement and chiral symmetry restoration take place.
- Such a state is called Quark Gluon Plasma (QGP)

Heavy ion collisions (HICs)

- It's possible to explore points far from the DIS region (T=0) in the L-QCD phase space through heavy ion collisions.
- This is done by varying the energy and centrality of collisions as well as mass of colliding ions.

Probing the medium

- One of the promising probes to study deconfinement and QGP formation in HICs is the suppression of quarkonia, in particular J/ ψ .

Screening in deconfined medium

Debye screening

- QCD screening length $\lambda_{\,\mathrm{D}}$ in deconfined medium decreases with temperature
- Quarkonia "melt" when their binding distance becomes bigger than screening length

F. Karsch et al. (Nucl. Phys. A698(2002) 199c; hep-lat/0106019)

ура (ш) ао.6	% _€ (0.59 fm)
0.5	Ψ'(0.56 fm)
0.4	λ _o Debye length from lattice QCD
0.3	J/\psi(0.29 fm)
0.2	7 (0.13 fm)
0.1	74
0 1	1.5 2 2.5 3 3.5 4 4.5 T/T _c

state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

- Binding distance depends on quarkonium state
- "Melting" in QGP occurs at different temperatures

RHIC

- HI and polarized proton colliding machine
 - Operates with CM energy per nucleon in wide range
 - 200GeV & 500GeV in p+p
 - 22.5GeV & 200GeV in Cu+Cu
 - 62GeV & 200GeV in Au+Au
 - 200GeV in d+Au

PHENIX J/ ψ cross section measurements

Central Arms:

Hadrons, photons, electrons

- $\Phi J/\psi \rightarrow e^+e^-$
- $+ |\eta| < 0.35$
- $p_{e} > 0.2 \text{ GeV/c}$
- $\Phi \Delta \phi = \pi (2 \text{ arms x } \pi/2)$

Forward rapidity Arms:

Muons

- $\Phi J/\psi \rightarrow \mu + \mu$
- $+1.2 < |\eta| < 2.2$
- $p_u > 1 \text{ GeV/c}$
- $\Phi \Delta \phi = 2\pi$

Global detectors

Beam-Beam Counter (BBC)

Zero Degree Calorimeter (ZDC)

Centrality classes

Dividing total cross section according to centrality

- Use BBC charge vs. ZDC energy
- N_{coll}: number of binary inelastic N-N collisions
- N_{part}: number of nucleons that undergo inelastic collisions
- Glauber model + detector response simulation => $\langle N_{part} \rangle \& \langle N_{coll} \rangle$

Most peripheral 80 - 92.2% $< N_{part} > = 6.3 \pm 1.2$ $< N_{coll} > = 4.9 \pm 1.2$

Most central 0-5% $< N_{part} > = 351.4 \pm 2.9$ $< N_{coll} > = 1065 \pm 105$

Signal extraction

- Invariant mass spectra of μ + μ and e+e (B ~ 6% each)
- Combinatorial background subtracted by

event mixing

- Fitted with:
 - Gaussians for the mass peak
 - Exponentials for physical background (heavy flavor decay and/or Drell-Yan)
 - Average value of various fits used as ${\sf J}/\psi$ count
 - Dispersion is included in systematic errors.

PHENIX J/ ψ measurements summary

Run	Species	√s _{NN} [GeV]	∫Ldt	J/ψ counts	J/ψ counts	Reference
				(y <0.35)	(1.2< y <2.5)	
1	Au+Au	130	1µb-1	<u> </u> '		
2	Au+Au	200	24µb ⁻¹	13		
	p+p	200	0.15pb ⁻¹	46	65	PRC69, 014901(2004)
3	d+Au	200	2.74nb ⁻¹	364	1186	PRL92, 051802(2004)
	p+p	200	0.35pb ⁻¹	130	448	PRL96, 012304 (2006)
4	Au+Au	200	241µb ⁻¹	1000	4449	nucl-ex/0611020
	Au+Au	63	9µb⁻¹			
_	p+p	200	350nb ⁻¹			
5	Cu+Cu	200	3nb ⁻¹	2300	9000	(prel.)nucl-ex/0510051
	Cu+Cu	62	0.19µb ⁻¹		146	
	Cu+Cu	22.5	2.7µb ⁻¹			
	p+p	200	3.8pb ⁻¹	1500	8005	hep-ex/0611020
6	p+p	200	10.7pb ⁻¹			
	p+p	62	0.1pb ⁻¹			
7	Au+Au	200	4x run 4?	<u> </u>		

Running

Contributions to J/ ψ cross-section in HICs

Creation (at RHIC energies)

- Directly in gluon fusions (gg ightarrow J/ ψ)
 - Very early in nucleon-nucleon hard scatterings

- Feed down from excited states of charmonia, multiple measurements
 - Example HERA-B : ($\chi_c \rightarrow J/\psi X$) ~ 21±5% and ($\psi' \rightarrow J/\psi X$) ~ 7±0.4% (*)

Gluon shadowing: modification of PDFs in nuclei

Suppression

- Absorption by receding fragments from initial heavy ions $(J/\psi + N \rightarrow X)$
- Interaction with fast moving gluons $(J/\psi + g \rightarrow X)$
- Dissociation by eventual QGP

Enhancement

- Possible recombination from uncorrelated c and c quarks

(*) Abt et al. Eur. Phys. J. C49 (2007) 545-558

J/ψ measurements in p+p collisions (1/2)

• Why J/ ψ in p+p?

 Heavy Ion collision yields are normalized by p+p collision yields

$$R_{AB}(y, p_t) = \frac{d^2N_{AB}/dydp_t}{\langle N_{coll} \rangle \times d^2N_{pp}/dydp_t}$$

- Clarify poorly understood J/ ψ production mechanism (CSM/COM?)
- Initial & final state absorptions (cold nuclear matter, gluon) depend on the J/ψ formation mechanism

Total cross section fits to PYTHIA NLO

$$BR \cdot \sigma_{tot} = 178 \pm 3^{stat} \pm 53^{sys} \pm 18^{norm} \text{ nb}$$

J/ψ measurements in p+p collisions (2/2)

Observation :

 No model fits absolute cross section, rapidity distribution (RHIC), and polarization (example: E866) simultaneously

Cold nuclear matter (CNM) effects

• J/ ψ suppression in d+Au:

- PRL, 96, 012304 (2006)
- Modest shadowing
 - EKS^(*) favored
- Weak nuclear absorption

$$\sigma_{(J/\psi+N\to X)} \sim 1-3mb$$

X₂: Momentum fraction in nucleus

<y></y>	<x2></x2>
-1.7	0.09
0	0.02
1.7	0.003

Effective x_2 vs. y at \sqrt{s} = 200GeV, Δy =0

(*) Eskola, Kolhinen, Salgado Eur. Phys. J. C9 (1999) 61

Au+Au and Cu+Cu collisions

Summary plot :

Au+Au final (nucl-ex/0611020) Cu+Cu prelim (nucl-ex/0510051)

- J/ ψ suppression measurements in HICs

Suppression in most central Au+Au goes down to ~ 0.2

Comparison with extrapolations from d+Au

Two calculations shown

- CNM effects model based on 1-3mb absorption and shadowing. (*)
- Glauber model + rapidity
 symmetrization of d+Au points (**)
 - $R_{AA}(\pm y) = R_{dA}(-y) \times R_{dA}(+y)$
- Suppression much higher than accountable by CNM effects
- Not possible with Cu+Cu
 - No d+Cu/p+Cu run

(*) R. Vogt, Acta Phys. Hung. A25 (2006) 97–103 (**) R. Granier de Cassagnac, hep-ph/0701222

 N_{part}

Rapidity dependence of suppression

R_{AA} vs. rapidity for different centrality classes

- Distribution gets narrower with increasing centrality
- Challenge to most "local density" based models

Dashed lines: Gaussian fits.

Dotted lines : $\pm 1 \sigma$ variation of fit pars.

Bar: stat. + uncorrelated syst. errors

Box: correlated syst. errors

Direct comparison to SPS

- J/ ψ were also measured in HICs at SPS
 - S+U (NA38), Pb+Pb (NA50) and In+In (NA60), fixed target ($\sqrt{s_{NN}} \sim 20 \text{GeV}$)
- Comparing RHIC and SPS is delicate
 - Factoring out CNM effects (not same at SPS/RHIC)

- R_{AA} (y~0) ~ R_{AA} (SPS)
 - Not what's expected from

$$\sqrt{s_{NN,SPS}} < \sqrt{s_{NN,RHIC}}$$

Rapidity ranges not same

$$0 < y_{sps} < 1$$

- Big error bars on RHIC data points
- − ~10% normalization error at SPS

Scomparin (proc. QM06) : nucl-ex/0703030

 N_{part}

Indirect comparisons to SPS

Test with RHIC data models that worked at SPS

- Most models are strongly challenged by the rapidity trend, and less suppression at mid rapidity PHENIX 200 GeV J/W

Testing sequential melting

Latest L-QCD results suggest :

- No J/ ψ suppression for T<1.5T_c (\gtrsim 10GeV/fm³) complete only T>2.5T_c
- ψ ' and χ _c start melting at 1.1T_c (possibly at RHIC)
- Is suppression seen at RHIC & SPS only on feed down part?

Survival probability

- R_{AA}/CNM
 - RHIC: σ_{CNMabs} = 1mb
 - SPS : σ_{CNMabs} = 4.18mb

$$- \epsilon_{Bj} = \frac{dE_T}{du} \frac{1}{\tau_0 \pi R^2}$$

Cautions

- τ_0 = 1fm/c too much for RHIC?
- CNM contribution at RHIC energy badly constrained!

(*) Karsch, Kharzeev, Satz, PLB 637 (2006) 75

More on rapidity dependence of R_{AA}

Color Glass Condensate

- Charmed meson calculations based on CGC give higher mid rapidity yields (may not hold for ${\sf J}/\psi$)
- Quantitative prediction for J/ψ in d+Au and Au+Au is indispensable to draw conclusion

Regeneration

- High charm density at RHIC
 - 10 to 20 in most central (*)
- Recombination at latter stages to populate mid rapidity and low p_T
- Attenuates the suppression at mid rapidity
- Testable with p_T hardness

(*) S. S. Adler et al. PRL 94 (2005) 082301

Hardness of the p_T spectrum

The plotted $\langle p_T^2 \rangle$ is calculated directly from the measured data points $(p_T \langle 5 \text{GeV/c})$, no fitting or extrapolation

- Hardness of p_T spectrum sensitive to formation mechanism
- No strong N_{part} dependence of $\langle p_T^2 \rangle$, only slight rise at forward rapidity

Testing regeneration models

• Recombined J/ ψ populate low p_T

- This leads to softened p_T spectra and flatten $\langle p_T^2 \rangle$ vs. N_{coll}

- Detailed knowledge of charm quark production is required to better constrain models.
 - Silicon vertex detector upgrade, being constructed, installation \sim run 9/10

(cf. Talk by J. Lajoie)

Prospects

• J/ ψ flow : promising test of regeneration

- Elliptic flow: collective phenomenon, transforms initial spatial anisotropy of collision region into momentum anisotropy
- Electrons from c and b quark meson decays have been observed with nonzero elliptic flow

(cf. Talk by D. Hornback)

- If regeneration takes place, ${\rm J}/\psi$ elliptic flow should show similar trend

New Au+Au run underway

- \sim 4x higher statistics expected
- Upgrade for better reaction plane measurement resolution

Summary

• Reviewed J/ ψ results from PHENIX

- In p+p collisions, production baseline is measured:
 - The absolute cross sections are compatible with PYTHIA
 - No model explains simultaneously polarization & rapidity distribution
- In d+Au collisions, cold nuclear matter effects are characterized. Despite lack of statistics, data favors:
 - Some gluon shadowing and slight nuclear absorption
 - Much bigger statistics is needed to disentangle CNM effects!
- In Au+Au measurements:
 - Very similar suppression at mid rapidity in Au+Au as at SPS
 - Higher suppression at forward rapidity than at mid rapidity
 - Hardness of pT spectrum is not very sensitive to N_{coll}
- In Cu+Cu (prelim.), early to draw strong conclusions, final results soon!
- Future runs (higher statistics and upgrades) should help clarify further the global vision.

Backup

QM06 versus QM05

- At forward rapidity, on the lower edge of systematics
 - (better handling of backgrounds and new pp reference)
- At midrapidity, less <u>subjective</u> "onset" like shape...

Feed down ratios

- From HERA-B (pA √s=41.6 GeV)
 - 7.0 \pm 0.4 % from ψ'
 - 21 \pm 5 % from χ_c
 - 0.065 \pm 0.011 % from B

Faccioli, Hard Probes 2006